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Motivating problem: Charles’ dilemma

He’d like to invest some money in the market.

He’s heard passive funds are the way to go.
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But ... ∃ thousands of passive funds
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The context for this talk

This problem (and many others like it!) can be studied using
variable selection techniques from statistics to induce sparsity.

What’s typically done? (broadly speaking)

• Bayesian: Shrinkage prior design.
• Frequentist: Penalized likelihood methods.

Common theme? Sparsity and inference go hand in hand.
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Separating priors from utilities

Our view: Subset selection is a decision problem. We need a
suitable loss function, not a more clever prior.

This leads us to think of selection in a “post-inference
world” by comparing models (or in this case, portfolios)
based on utility.∗

*sparsity and statistical uncertainty play a key role in this
post-inference exercise.
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Utility-based selection: Primitives

Let wt be a portfolio decision, λt be a complexity parameter, Θt be
a vector of model parameters, and R̃t be future data.

1. Loss function L(wt, R̃t) – measures utility.

2. Complexity function Φ(λt,wt) – measures sparsity.

3. Statistical model Π(Θt) – characterizes uncertainty.

4. Regret tolerance κ – characterizes degree of comfort
from deviating from a “target decision” (in terms of
posterior probability).
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Utility-based selection: Procedure

• Optimize E[L(wt, R̃t) + Φ(λt,wt)], where the
expectation is over p(R̃t,Θt | R).

• Calculate regret versus a target w∗
t for decisions

indexed by λt.

→ ρ(wλt ,w∗
t , R̃t) = L(wλt , R̃t)− L(w∗

t , R̃t)

• Select w∗
λt as the decision satisfying the tolerance.

→ πλt = P[ρ(wλt ,w∗
t , R̃t) < 0] (satisfaction probability)

→ Select wλ∗
t s.t. πλ∗

t > κ
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What is innovative here?

Portfolio selection literature typically focuses on one of the following:

• Modeling inputs Θt = (µt,Σt): Jobson (1980), Ledoit and Wolf
(2007), Garlappi (2007), DeMiguel (2009) ...

• Optimizing in a clever way: Jagananathan (2002), Brodie (2009),
Fan (2012), Fastrich (2013) ...

Utility-based selection incorporates both modeling and
optimization through analysis of ρ(wλt ,w∗

t , R̃t).
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Example I: Long-only ETF investing

• Let R̃t be a vector of future ETF returns.
• Let wt be the portfolio weight vector (decision) at time t.
• We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: − log
(
1+

∑N
k=1 wk

t R̃k
t

)
2. Complexity: Number of funds in portfolio (think ∥wt∥0)
3. Model: DLM for R̃t parameterized by (µt,Σt | Dt−1)

Data: Monthly returns on 25 ETFs from 1992-2016.
Target: Fully invested (dense) portfolio.
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Step 1: Constructing portfolio decisions

• Portfolio decisions have ≤ 5 funds.

• ≥ 25% in SPY

Decisions are found by minimizing expected loss for each time t.
Results in a choice of 12,950 decisions to choose among!!
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Step 1: The expected loss

L(wt) = EΘtER̃t|Θt

[
− log(1+ΣN

k=1wk
t R̃k

t ) + Φ(λt,wt)
]

≈ EΘtER̃t|Θt

[
−ΣN

k=1wk
t R̃k

t +
1
2Σ

N
k=1Σ

N
j=1wk

t wj
tR̃k

t R̃j
t +Φ(λt,wt)

]
= −wT

t µt +
1
2wT

t Σ
NC
t wt +Φ(λt,wt).

The past returns Rt enter into our utility consideration by defining
the posterior predictive distribution.
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Step 2: Compute and examine ρ for optimal decisions

λt−decisions ordered by increasing satisfaction probability − March 2002
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Step 3: Select decisions based on satisfaction threshold κ

Dates SPY EZU EWU EWY EWG EWJ OEF IVV IVE EFA IWP IWR IWF IWN IWM IYW IYR RSP

2003 25 - 58 - - - - - - - - - - 8.3 - - - 8.3
2004 25 - 43 - - 20 - 6.2 - - - - - - - - - 6.2
2005 25 - 25 - 6.2 13 - - - - - - - - - - 30 -
2006 62 - - - 6.2 19 - - - - - - 6.3 - 6.2 - - -
2007 75 - - 25 - - - - - - - - - - - - - -
2008 44 - - - 8.3 21 - - - 26 - - - - - - - -
2009 30 - - 6.2 - 41 - - - 17 6.3 - - - - - - -
2010 75 - - 8.3 - - - - - - 8.3 - - - - 8.3 - -
2011 58 - 25 - - - - - - - 8.3 - - - - 8.3 - -
2012 29 8.3 - - - 54 - - - - - - - - - 8.3 - -
2013 34 - - - - 49 - - - - 8.3 - - - - 8.3 - -
2014 25 - - - - 37 26 - - 6.2 - 6.2 - - - - - -
2015 45 - - - - 39 - - 8.3 - 8.3 - - - - - - -
2016 35 - - - - 40 - 17 - - 8.3 - - - - - - -

Selected decisions for κ = 45% threshold.

13



What happens when κ is varied?
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Comparing portfolios to their targets out of sample

out-of-sample statistics
Sharpe
ratio s.d. mean

return
sparse 0.40 14.98 6.02
dense 0.45 14.41 6.47

Ex ante equivalence appears to carry over ex post.

There appear to be little ex post benefits of diversification.
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What about other models / variable selection tasks?
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Example II: Seemingly unrelated regressions

Y = βX + ϵ, ϵ ∼ N(0,Ψ)

• Y is q length response vector
• X is p length covariate vector
• β is q × p coefficient matrix
• Ψ is non-diagonal matrix

finance: asset pricing, operations management: supply/demand
structural equations, marketing: consumer preferences, economics:
capital structure, firm composition, macroeconomic indicators.

We are interested in the structure of β!
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Meat science
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Factor selection for asset pricing

The Factor Zoo (Cochrane, 2011) – many possible factors ...

• Market
• Size
• Value
• Momentum
• Short and long term reversal
• Betting against β
• Direct profitability

• Dividend initiation
• Carry trade
• Liquidity
• Quality minus junk
• Investment
• Leverage
• ...

19



Example II: Factor selection for asset pricing

Let the return on test assets be R, and the return on factors be F.
R = γF + ϵ, ϵ ∼ N(0,Ψ)

Primitives:

1. Loss: L(γ, R̃, F̃) = − log p(R̃|F̃)
2. Complexity: Φ(λ, γ) = λ ∥γ∥1.
3. Model: R|F with normal errors and conjugate g-priors and F

via gaussian linear latent factor model.
4. Regret tolerance: Let’s consider several κ’s.

Data: R: 25 Fama-French portfolios, F: 10 factors from finance literature
Targets: The λ = 0 model, i.e.: the fully dense graph
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ρ distributions for different sparse graphs

models ordered by decreasing λ
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Factor selection graph, κ = 12.5%

R: 25 Fama-French portfolios, F: 10 factors from finance literature
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Selected graphs under different satisfaction tolerances κ

κ = 2 %
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Example III: Monotonic function estimation

Goal: Describe expected returns with firm characteristics or
accounting measures (size, book-to-market, momentum, ...).

E[Rit | Xit−1] = f (Xit−1)

Rit: excess return of firm i at time t
Xit−1: vector of characteristics of firm i at time t

We would like to learn f !
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Portfolio sorts are one way to understand f ...

Jegadeesh and Titman (2001)
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Challenges and a solution

• Xit−1 is multidimensional.
• Even if we had only 12 characteristics and sorted into quintiles

along each dimension, that requires constructing
512 = 244140625 portfolios!

We propose modeling the CEF as an additive quadratic spline
model (with monotonicity constraints and time variation):

E[Rit | Xit−1] = αt +
K∑

k=1
gkt(xki,t−1)
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Why monotonicity?

Finance theory often tells us that expected returns increase or
decrease in each characteristic. Ex: past high-performing firms
have higher returns than past weak-performing firms, on average.

Using this information is statistically advantageous!
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Why monotonicity?

Finance data is noisy – any bias aids in more precise estimation.
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Estimated functions at January 1978
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monotonicity is enforced by linear constraints on spline coefficients
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How does the function vary over time?
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dynamics are modeled by likelihood discounting, McCarthy and Jenson (2016)
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A model with 36 characteristics - January 1978
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A model with 36 characteristics - January 1978
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Future work

Where to go from here?

• New utility specifications: value-at-risk and simulation based.
Analyzing other properties of the regret distribution.

• New models: multinomial regression and classification models,
nonlinear and nonparametric models.

• New application areas: corporate finance, marketing,
macroeconomics.

Existing papers:
Regret-based selection for sparse dynamic portfolios.
submitted (2017). Thesis ch. 2.

Variable selection in SUR models with random predictors.
Bayesian Analysis (2017). Thesis ch. 3.

Monotonic effects of characteristics on returns.
working paper (2018). Thesis ch. 3.5. 33



Concluding thoughts, and thanks!

• Passive investing, SUR model selection, and monotonic
function estimation approached using new feature selection
technique.

• Utility functions can enforce inferential preferences that
are not prior beliefs.

• Statistical uncertainty should be used as a guide to avoid
overfitting.
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Extra slides



Treatment effect estimation

Suppose we are trying to estimate the treatment effect of dietary
kale on cholesterol level. But ... we only have observational data.

Yi = β0 + αZi + ϵi

• Yi is cholesterol level
• Zi is amount of kale eaten.
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Problem: Gym rats tend to eat more kale!

In other words, exercise is predictive of cholesterol and kale intake!
This leads to omitted variable bias.

Yi = β0 + αZi + ϵi

Because cov(Zi, ϵi) ̸= 0 we can write:

Yi = β0 + αZi + wZi + ϵ̃i

with cov(Zi, ϵ̃i) = 0, we mis-estimate α as α+ w!
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Solution: “Adjust” for weekly exercise

By controlling for weekly exercise Xi in the regression

Yi = β0 + αZi + βXi + ϵi

we can “clear out” the confounding.

Conditional on Xi, cov(Zi, ϵi) = 0 and we’re all set!

But what if Xi is a big vector, and we don’t know which
covariates to control for? (Enter sparsity).
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Regularized treatment effect estimation

Consider the model with no intercept and many covariates Xi:

Yi = αZi + XT
i β + ϵi

We can induce sparsity with a ridge prior on β and leaving α

unpenalized. This injects bias into treatment effect estimate:

bias(α̂ridge) = −(ZTZ)−1ZTX
(

XTX + λIp − XTX̂Z
)−1

λβ ̸= 0

where (ZTZ)−1ZTX is a p-length vector of coefficients from p
univariate regressions of each Xj on Z and X̂Z = Z(ZTZ)−1ZTX
are the predicted values from these regressions.

This nonzero bias is referred to regularization-induced
confounding (RIC). 39



A different approach eliminates RIC

Consider the model where a likelihood is included for Z:

Selection equation: Zi = XT
i γ + ϵi

Response equation: Yi = αZi + XT
i β + νi

• Extract propensity from selection equation: Ẑ ≈ Xγ̂

• Augment covariates with propensity X̂new =
(
Z Ẑ X

)
• Ridge estimate with Z and Ẑ unpenalized mitigates RIC

Regularization and confounding in linear regression for treatment effect estimation.

Bayesian Analysis (2017).
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A different approach eliminates RIC

The bias of the treatment effect becomes:

bias(α̂ridge) = −{(Z̃TZ̃)−1Z̃TX}1
(

XTX + λIp − XTX̂Z
)−1

λβ ≈ 0

where Z̃ =
(
Z Ẑ

)
and {·}1 corresponds to the top row of the

matrix {·}. {(Z̃TZ̃)−1Z̃TX}1 are the coefficients on Z in the two
variable regressions of each Xi on

(
Z Ẑ

)
.

Controlling for the propensity of the treatment wipes out
regularization-induced confounding (RIC) in the treatment

effect estimate.
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Next steps

Selection equation: Zi = XT
i γ + ϵi

Response equation: Yi = αZi + XT
i β + νi

• Develop fast empirical Bayes approach to regularize two
equation system.

• Account for clustered observations using block boostrapping.
• Many application in social science, including

micro/macroeconomics and corporate finance.
• RIC still exists even in nonlinear, statistical learning based

models! Why? Because they especially need to be regularized.
Extend this approach to random forests.
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A dynamic regression model giving moments (µt,Σt)

R̃i
t = (βi

t)
TR̃F

t + ϵi
t, ϵi

t ∼ N(0, 1/ϕi
t), β

i
t = βi

t−1 + wi
t, wi

t ∼ Tni
t−1

(0,Wi
t),

βi
0 | D0 ∼ Tni

0
(mi

0,Ci
0), ϕi

0 | D0 ∼ Ga(ni
0/2, di

0/2),
βi

t | Dt−1 ∼ Tni
t−1

(mi
t−1,Ri

t), Ri
t = Ci

t−1/δβ ,

ϕi
t | Dt−1 ∼ Ga(δϵni

t−1/2, δϵdi
t−1/2),

R̃F
t = µF

t + νt, νt ∼ N(0,ΣF
t ), µF

t = µF
t−1 +Ωt Ωt ∼ N(0,Wt,Σ

F
t ),

(µF
0 ,Σ

F
0 | D0) ∼ NW−1

n0 (m0,C0, S0),

(µF
t ,Σ

F
t | Dt−1) ∼ NW−1

δFnt−1
(mt−1,Rt, St−1), Rt = Ct−1/δc︸ ︷︷ ︸

µt = βT
t µ

F
t

Σt = βtΣ
F
tβ

T
t +Ψt

→ Moments are used in the expected loss minimization
→ Predictive distribution is used to compute ρ
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Formulating as a convex penalized optimization

Define Σ = LLT.

L(w) = −wTµ+
1
2wTΣw + λ ∥w∥1

=
1
2
∥∥LTw − L−1µ

∥∥2
2 + λ ∥w∥1 .

Now, we can solve the optimization using existing algorithms, such
as lars of Efron et. al. (2004).
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Example: Gross exposure complexity function

• Let R̃t be a vector of N future asset returns.
• Let wt be the portfolio weight vector (decision) at time t.
• We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: − log
(
1+

∑N
k=1 wk

t R̃k
t

)
2. Complexity: λt ∥wt∥1

3. Model: DLM for R̃t parameterized by (µt,Σt)

4. Regret tolerance: Let’s consider several κ’s.

Assume the target is fully invested (dense) portfolio.
Data: Returns on 25 ETFs from 1992-2016.
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Optimal decisions lined up for a snapshot in time

After optimizing expected loss for 500 λt’s, we compute regret
ρ(wλt ,w∗

t , R̃t) (left axis) and πλt (right axis).

λt−decisions ordered by increasing satisfaction probability − March 2002
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Regret-based selection: Illustration

dλ : sparse decisions, d∗ : target decision.

πλ = P[ρ(dλ, d∗, Ỹ) < 0]: probability of not regretting λ-decision.
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Ex ante SRtarget − SRdecision evolution
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UBS for Monotonic function estimation

The regression model is:

Rit = αt +
K∑

k=1
fkt(xki,t−1) + ϵit, ϵit ∼ N(0, σ2)

Insight – with quadratic splines for all fkt, this can be written as a
predictive regression:

Rt ∼ N
(
Xt−1Bt, σ

2
t Int

)
where

Xt−1 =
[
1nt Xt−1

]
, Bt =

[
αt βt

]
Xt−1 is matrix of size nt ×K(m+ 2), βt is vector of size K(m+ 2).
Therefore, each firm is given a row in Xt−1, and each m + 2 block
of βt corresponds to the coefficients on the spline basis for a
particular characteristic, k. 49



UBS for Monotonic function estimation

We can now proceed as Hahn and Carvalho (2015). The loss
function is the negative log density of the regression plus a penalty
function Φ with parameter λt. Also, let the “sparsified action” for
the coefficient matrix At.

Lt(R̃t,At,Θt) =
1
2(R̃t − Xt−1At)

T(R̃t − Xt−1At) + Φ(λt,At).

After integrating over p(R̃t,Θt), we obtain:

Lλt(At) =
∥∥Xt−1At − Xt−1Bt

∥∥2
2 +Φ(λt,At)
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Modeling Time-dynamics: McCarthy and Jensen (2016)

• Power-weighted likelihoods let information decay over time
• To estimate parameters at time τ , let δt = 0.99τ−t, such that

δ1 ≤ δ2 ≤ ... ≤ δτ = 1, the likelihood at time τ ∈ {1, ...,T} is

p(R1, ...,Rτ |Θτ ) =
τ∏

t=1
p(Rt|Θτ )

δt .
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Model Summary

Rt|· ∼ N
(
αt1nt +

K∑
k=1

fkt(xk,t−1), σ
2
t In

)δt

fkt(xk,t−1) = Xk,t−1βkt = Xk,t−1L−1Lβkt = Wktγkt

αt ∼ N(0, 10−2)

σ2
t ∼ U(0, 103)

(γjkt|Ijkt = 1, σ2
t ) ∼ N+(0, ckσ

2
t )

(γjkt|Ijkt = 0) = 0
Ijkt ∼ Bn(pjk = 0.2).
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Data

Freyberger, Neuhierl, and Weber (2017)’s dataset:

• CRSP monthly stock returns for most US traded firms
• 36 characteristics from Compustat and CRSP, including size,

momentum, leverage, etc.
• July 1962 - June 2014

Presence and direction of monotonicity is determined by important
paper in the literature
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