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The data
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The data: Monthly returns
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Given this observed data, our motivating question is:

What firm characteristics are predictive of its return?
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There are two parts to the answer:

1. Building an appropriate (Bayesian) model.

2. Selecting characteristics (given statistical uncertainty).
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The object of interest

The conditional expectation of returns given observed characteristics

E[Rit | Xi t−1] = f (Xi t−1)

Rit : excess return of firm i at time t
Xit−1: vector of characteristics of firm i at time t

We would like to learn f
and which Xk

it−1’s matter!
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Step 1: A model for f
Portfolio sorts are one way ...

Jegadeesh and Titman (2001)
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A generated example
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Challenges and a solution

I Xit−1 is multidimensional.
I No information sharing across the X space.
I Even if we had only 12 characteristics and sorted into quintiles

along each dimension, that requires constructing
512 = 244140625 portfolios!

We propose modeling the CEF using additive quadratic splines
(with monotonicity constraints and time variation):

E[Rit | Xi t−1] = αt +
K∑

k=1

gkt(xki ,t−1)
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Features of our model

1. Monotonicity on partial effects are incorporated by constraint
on the spline coefficients.
→ improvement over nonlinear models that fit to noise.

2. Time dynamics modeled using a power-weighting likelihood
approach.
→ improvement over rolling window models.
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Why monotonicity?
Estimated functions at January 1978
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monotonicity is enforced by linear constraints on spline coefficients
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Why time variation?
Estimated functions at January 1978 and 2014
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dynamics are modeled by likelihood discounting, McCarthy and Jenson (2016)
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Step 2: Characteristic selection

In light of all statistical uncertainty:

Which characteristics in Xk
it−1 matter?

(Does this selected set vary over time?)
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Sparsity

This problem (and many others like it!) can be studied using
variable selection techniques from statistics to induce sparsity .

What’s typically done? (broadly speaking)

I Bayesian: Shrinkage prior design.
I Frequentist: Penalized likelihood methods.

Common theme? Sparsity and inference go hand in hand.
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Separating priors from utilities

Our view: Subset selection is a decision problem. We need a
suitable loss function, not a more clever prior.

This leads us to think of selection in a “post-inference world"
by comparing models (sets of characteristics) based on
utility.∗

*sparsity and statistical uncertainty play a key role in this
post-inference exercise.
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Utility-based selection: Primitives

Let bt be a model decision, λt be a complexity parameter, Θt be a
vector of model parameters, and R̃t be future data.

1. Loss function L(bt , R̃t) – measures utility.

2. Complexity function Φ(λt , bt) – measures sparsity.

3. Statistical model Π(Θt) – characterizes uncertainty.
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Utility-based selection: Procedure

I Optimize E[L(bt , R̃t) + Φ(λt , bt)], where the
expectation is over p(R̃t ,Θt | R).

I Calculate “regret” versus a target b∗t for decisions
indexed by λt .

→ ∆(bλt , b
∗
t , R̃t) = L(bλt , R̃t)− L(b∗t , R̃t)

I Posterior summary: Look at graphical summaries of
optimal models, i.e.:

→ πλt = P[∆(bλt , b
∗
t , R̃t) < 0] (satisfaction probability)
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What does this look like for our problem?

Primitives:
1. Loss: L(R̃t ,At ,Θt) = 1

2(R̃t − Xt−1At)
T (R̃t − Xt−1At)

2. Complexity: Group lasso penalty on the spline basis
coefficients At defined as Φ(λt ,At)

3. Model: Dynamic monotonic quadratic splines

Expected Loss:
Integrating over p(R̃t ,Θt), we obtain:

Lλt (At) =
∥∥Xt−1At − Xt−1Bt

∥∥2
2 + Φ(λt ,At)
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Procedure output: Posterior summary plots
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I Like a LASSO solution path, but better!

I Predictive uncertainty bands surround each expected utility
optimal model.
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Results



The data

Freyberger, Neuhierl, and Weber (2017)’s dataset:

I CRSP monthly stock returns for most US traded firms
I 36 characteristics from Compustat and CRSP, including size,

momentum, leverage, etc.
I July 1962 - June 2014

Presence and direction of monotonicity is determined by important
papers in the literature.
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Comparison of estimated functions – Size in 1994
OLS Random Forest
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Comparison of estimated functions – Size in 2014
OLS Random Forest
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Dynamics of estimated functions

Short-term reversal Size
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Dynamics of estimated functions

Profitability Investment

1980
1990

2000
2010

0.0
0.2

0.4
0.6

0.8
1.0

−0.02

−0.01

0.00

0.01

0.02

0.03

YearPercentile

E(R)

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

1980
1990

2000
2010

0.0
0.2

0.4
0.6

0.8
1.0

−0.02

−0.01

0.00

0.01

0.02

0.03

YearPercentile

E(R)

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

Not much evidence for the new Fama and French factors*
*conditional upon all other variables

24



Which characteristic matter?
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Volatility and momentum strategies selected often
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Structure through monotonicity helps for prediction
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Concluding thoughts, and thanks!

I Be wary of machine learning methods, especially when
modeling finance data.

I Utility functions can enforce inferential preferences that
are not prior beliefs.

I Statistical uncertainty should be used as a guide to avoid
overfitting.
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Extra slides



What characteristics matter over the entire period?
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Regret-based selection: Illustration

dλ : sparse decisions, d∗ : target decision.

πλ = P[ρ(dλ, d
∗, Ỹ ) < 0]: probability of not regretting λ-decision.
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UBS for Monotonic function estimation
The regression model is:

Rit = αt +
K∑

k=1

fkt(xki ,t−1) + εit , εit ∼ N(0, σ2)

Insight – with quadratic splines for all fkt , this can be written as a
predictive regression:

Rt ∼ N
(
Xt−1Bt , σ

2
t Int
)

where

Xt−1 =
[
1nt Xt−1

]
, Bt =

[
αt βt

]
Xt−1 is matrix of size nt × K (m + 2), βt is vector of size
K (m + 2). Therefore, each firm is given a row in Xt−1, and each
m + 2 block of βt corresponds to the coefficients on the spline
basis for a particular characteristic, k . 32



UBS for Monotonic function estimation

We can now proceed as Hahn and Carvalho (2015). The loss
function is the negative log density of the regression plus a penalty
function Φ with parameter λt . Also, let the “sparsified action" for
the coefficient matrix At .

Lt(R̃t ,At ,Θt) =
1
2

(R̃t − Xt−1At)
T (R̃t − Xt−1At) + Φ(λt ,At).

After integrating over p(R̃t ,Θt), we obtain:

Lλt (At) =
∥∥Xt−1At − Xt−1Bt

∥∥2
2 + Φ(λt ,At)
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Modeling Time-dynamics: McCarthy and Jensen (2016)

I Power-weighted likelihoods let information decay over time
I To estimate parameters at time τ , let δt = 0.99τ−t , such that
δ1 ≤ δ2 ≤ ... ≤ δτ = 1, the likelihood at time τ ∈ {1, ...,T} is

p(R1, ...,Rτ |Θτ ) =
τ∏

t=1

p(Rt |Θτ )δt .
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Model Summary

Rt |· ∼ N

(
αt1nt +

K∑
k=1

fkt(xk,t−1), σ2
t In

)δt
fkt(xk,t−1) = Xk,t−1βkt = Xk,t−1L

−1Lβkt = Wktγkt

αt ∼ N(0, 10−2)

σ2
t ∼ U(0, 103)

(γjkt |Ijkt = 1, σ2
t ) ∼ N+(0, ckσ2

t )

(γjkt |Ijkt = 0) = 0
Ijkt ∼ Bn(pjk = 0.2).
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Our Contribution

If we are serious about understanding the functional form of these
partial relationships, then we should have

1. Additive splines: flexible and can separate to marginal effects
2. Monotonicity: complement the flexibility of the splines with a

priori known structure
3. A single intercept: identifiable and intuitive
4. Time-dynamics modeled, not just a rolling window
5. Separation between the shrinkage of coefficients and selection

of characteristics
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1 - Additive Model

E(rit |xi ,t−1) = αt +
K∑

k=1

fkt(xk,i ,t−1)

I xk,i ,t−1 ∈ (0, 1) is the empirical percentile of characteristic k
for firm i at time t − 1, ranked over all firms

I Note that there are no interactions built into the model, as the
intention is to see the partial effect
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2 - Monotonicity

I For m known knots, x̃1, ..., x̃m,

f (x) = β1x + β2x
2 + β3(x − x̃1)2

+ + ...+ βm+2(x − x̃m)2
+

I Nondecreasing if all first derivatives are nonnegative
I Shively, Sager and Walker (2009) claim this yields m + 2 linear

constraints:
Lβ ≥ 0
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2 - Monotonicity

For m knots, there are m + 2 conditions to satisfy:

0 ≤ f ′kt(0) = β1kt

0 ≤ f ′kt(x̃1k) = β1kt + 2β2kt x̃1k

0 ≤ f ′kt(x̃2k) = β1kt + 2β2kt x̃2k + 2β3kt(x̃2k − x̃1k)

...
0 ≤ f ′kt(1) = β1kt + 2β2kt + 2β3kt(1− x̃1k) + ...+ 2βm+2,kt(1− x̃mk)

39



2 - Monotonicity

This can be vectorized as

0 ≤


1 0 0 ... 0 0
1 2x̃1k 0 ... 0 0
1 2x̃2k 2(x̃2k − x̃1k ) ... 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
1 2 2(1 − x̃1k ) ... 2(1 − x̃m−1,k ) 2βm+2,kt (1 − x̃mk )

βkt
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2 - Monotonicity

I For m known knots, x̃1, ..., x̃m,

f (x) = β1x + β2x
2 + β3(x − x̃1)2

+ + ...+ βm+2(x − x̃m)2
+

I Nondecreasing if all first derivatives are nonnegative
I Shively, Sager and Walker (2009) show this yields m + 2 linear

constraints:
Lβ ≥ 0

and the correct prior on γ = Lβ will enforce monotonicity

I We use a modified version of their shrinkage prior:

(γj |Ij = 0) ∼ δ0
(γj |Ij = 1) ∼ N+(0, cσ2)

Ij ∼ Bernoulli(0.2)
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3 - Intercept adjustment

Recall our additive model, with spline basis Xi ,k,t−1 and a single
intercept

E(rit |xi ,t−1) = αt +
K∑

k=1

Xi ,k,t−1βkt

⇒ αt is the expected return for a firm with the minimum value for
all characteristics, i.e. Xi ,k,t−1 = 0, ∀k .
Problems:
1. Computationally challenging due to few and volatile data

points
2. Intuitively unfavorable as a baseline
3. Cannot see the lower tail effects change over time
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3 - Intercept adjustment

Proposal: let the intercept be the expected return for a firm that
has the median value for all characteristics
I Requires transforming the splines such that they equal 0 at the

median x = 0.5 and not x = 0
I This then requires carefully expand spline basis and the

monotonicity constraint matrix L
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4 - Time-dynamics: McCarthy and Jensen (2016)

I Power-weighted likelihoods let information decay over time
I To estimate parameters at time τ , let δt = 0.99τ−t , such that
δ1 ≤ δ2 ≤ ... ≤ δτ = 1, the likelihood at time τ ∈ {1, ...,T} is

p(r1, ..., rτ |Θτ ) =
τ∏

t=1

p(rt |Θτ )δt .
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Empirics

I Freyberger, Neuhierl, and Weber (2017)’s dataset:
I CRSP monthly stock returns for most US traded firms
I 36 characteristics from Compustat and CRSP, including size,

momentum, leverage, etc.
I July 1962 - June 2014

I Model trained on 120 month rolling window
I Presence and direction of monotonicity is determined by

important papers in the literature
I “Fully" Monotonic model includes constraints on 24 of 36

predictors
I “FF5" Monotonic model includes constraints on 6 predictors:

size, book-to-market, investment, profitability, two horizons of
momentum
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