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Monthly returns
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Given this observed data, our motivating question is:

What firm characteristics are predictive of its return?



There are two parts to the answer:

1. Building an appropriate (Bayesian) model.

2. Selecting characteristics (given statistical uncertainty).



The object of interest

The conditional expectation of returns given observed characteristics
E[Ri | Xit—1] = f (Xjt-1)

R;+: excess return of firm / at time t
Xir—1: vector of characteristics of firm / at time t
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The object of interest

The conditional expectation of returns given observed characteristics
E[Ri | Xit—1] = f (Xjt-1)

R;+: excess return of firm / at time t
Xir—1: vector of characteristics of firm / at time t

We would like to learn f
and which X£_,’s matter!



Step 1: A model for f

Portfolio sorts are one way ...

Jegadeesh and Titman (2001)

Table I
Momentum Portfolio Returns
This table reports the monthly returns for momentum portfolios formed based on past six-month returns and held for six months. P1 is the
equal-weighted portfolio of 10 percent of the stocks with the highest returns over the previous six months, P2 is the equal-weighted portfolio of
the 10 percent of the stocks with the next highest returns, and so on. The “All stocks” sample includes all stocks traded on the NYSE, AMEX,
or Nasdaq excluding stocks priced less than $5 at the beginning of the holding period and stocks in the smallest market cap decile (NYSE size
decile cutoff). The “Small Cap” and “Large Cap” subsamples comprise stocks in the “All Stacks” sample that are smaller and larger than the
median market cap NYSE stock respectively. “EWI” is the returns on the equal-weighted index of stocks in each sample.

All Stocks Small Cap Large Cap

1965-1988 1965-1989 1990-1998 1965-1988 1965-1989 1990-1998 1965-1988 1965-1889 1990-1998

Pl (Past winners) 165 163 1.68 170 169 173 1.56 152 1.66
P2 1.39 141 132 145 150 133 125 1.24 127
P3 128 130 121 137 142 123 112 110 118
Pg 119 121 113 126 1.34 1.05 110 Lo7 120
P5 117 118 112 1.26 133 1.06 1.05 1.00 118
Pé 113 115 1.08 119 1.26 1.01 1.09 1.05 1.20
P7 11 112 1.08 114 120 0.98 1.09 Lo4 123
P8 105 105 103 109 117 0.88 104 L.00 117
P9 0.90 0.94 077 0.84 0.95 0.54 1.00 0.96 1.08
P10 (Past losers) 0.42 0.46 0.30 0.28 0.35 0.08 0.70 0.68 0.78
P1-P10 123 117 1.38 142 134 1.65 0.86 0.85 0.88
t statistic 6.46 4.96 4.71 T41 5.60 5.74 4.34 3.65 2.89
EWI 1.09 110 1.04 113 119 0.98 103 100 112
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Challenges and a solution

» X;r—1 is multidimensional.
» No information sharing across the X space.

» Even if we had only 12 characteristics and sorted into quintiles
along each dimension, that requires constructing
512 — 244140625 portfolios!

We propose modeling the CEF using additive quadratic splines
(with monotonicity constraints and time variation):

K

E[Rit | Xit—1] = a¢ + ngt(xki,tfl)
k=1




Features of our model

1. Monotonicity on partial effects are incorporated by constraint
on the spline coefficients.
— improvement over nonlinear models that fit to noise.

2. Time dynamics modeled using a power-weighting likelihood
approach.
— improvement over rolling window models.



Why monotonicity?

Estimated functions at January 1978

Expected Return
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monotonicity is enforced by linear constraints on spline coefficients

10



Why time variation?
Estimated functions at January 1978 and 2014

Jan 1978 Jan 2014
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Step 2: Characteristic selection

In light of all statistical uncertainty:

Which characteristics in X5_; matter?

(Does this selected set vary over time?)
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Sparsity

This problem (and many others like it!) can be studied using
variable selection techniques from statistics to induce sparsity.
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Sparsity

This problem (and many others like it!) can be studied using
variable selection techniques from statistics to induce sparsity.

What's typically done? (broadly speaking)
» Bayesian: Shrinkage prior design.
> Frequentist: Penalized likelihood methods.

Common theme? Sparsity and inference go hand in hand.
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Separating priors from utilities

Our view: Subset selection is a decision problem. We need a
suitable loss function, not a more clever prior.
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Separating priors from utilities

Our view: Subset selection is a decision problem. We need a
suitable loss function, not a more clever prior.

This leads us to think of selection in a “post-inference world"
by comparing models (sets of characteristics) based on
utility.”

*sparsity and statistical uncertainty play a key role in this
post-inference exercise.
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Utility-based selection: Primitives

Let b; be a model decision, A\; be a complexity parameter, ©; be a
vector of model parameters, and R; be future data.

1. Loss function £(b¢, R;) — measures utility.
2. Complexity function ® (¢, by) — measures sparsity.

3. Statistical model IN(©;) — characterizes uncertainty.

15



Utility-based selection: Procedure

> Optimize E[L(by, Re) + ®(Ar, be)], where the
expectation is over p(R¢, ©¢ | R).

» Calculate “regret” versus a target b} for decisions
indexed by A;.
—  A(by,, bf, Re) = L(by,, Re) — L(b}, Ry)
» Posterior summary: Look at graphical summaries of
optimal models, i.e.:

— 7, = P[A(by,, b}, Rt) < 0] (satisfaction probability)
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What does this look like for our problem?

Primitives:

1. Loss: E(ﬁt, At7 @t) == %(ﬁt — thlAt)T(ﬁt — thlAt)

2. Complexity: Group lasso penalty on the spline basis

coefficients A; defined as ®(\¢, Ay)
3. Model: Dynamic monotonic quadratic splines

Expected Loss:
Integrating over p(FNQt, ©¢), we obtain:

Ly(At) = HXt 1A — X¢o 1BtH2+¢ A, A

t)
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Procedure output: Posterior summary plots
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» Like a LASSO solution path, but better!
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Procedure output: Posterior summary plots
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» Like a LASSO solution path, but better!

» Predictive uncertainty bands surround each expected utility
optimal model.
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Results



The data

Freyberger, Neuhierl, and Weber (2017)'s dataset:

» CRSP monthly stock returns for most US traded firms

» 36 characteristics from Compustat and CRSP, including size,
momentum, leverage, etc.

» July 1962 - June 2014

Presence and direction of monotonicity is determined by important
papers in the literature.
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Comparison of estimated functions — Size in 1994
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Comparison of estimated functions — Size in 2014
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B

Dynamics of estimated functions <
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Partial effects of characteristics change over time

23



Dynamics of estimated functions

Profitability Investment
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Not much evidence for the new Fama and French factors*

*conditional upon all other variables
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Which characteristic matter?
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Structure through monotonicity helps for prediction

Comparison to Rolling OLS
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Concluding thoughts, and thanks!

» Be wary of machine learning methods, especially when
modeling finance data.

» Utility functions can enforce inferential preferences that
are not prior beliefs.

> Statistical uncertainty should be used as a guide to avoid
overfitting.
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Extra slides



What characteristics matter over the entire period?
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Regret-based selection: lllustration

Density

d), : sparse decisions, d* : target decision.

mx = P[p(dy, d*, ¥) < 0]: probability of not regretting A-decision.
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UBS for Monotonic function estimation

The regression model is:

K

Rir = ot + Z fe Xk e—1) + €ies  €ie ~ N(0, 0?)
k=1

Insight — with quadratic splines for all f,, this can be written as a
predictive regression:

Re ~ N (X¢—1Bs, oZlp,)

where
Xi-1= [1nt Xt—l] , Be= [Oét /Bt]

X:—1 is matrix of size n; x K(m+ 2), 3, is vector of size

K(m + 2). Therefore, each firm is given a row in X;_1, and each

m + 2 block of 3, corresponds to the coefficients on the spline

basis for a particular characteristic, k. 32



UBS for Monotonic function estimation

We can now proceed as Hahn and Carvalho (2015). The loss
function is the negative log density of the regression plus a penalty
function ® with parameter A;. Also, let the “sparsified action" for
the coefficient matrix A;.

. 1 - .
L¢(Re, A, ©) = E(Rt — Xt—lAt)T(Rt — Xe—1Ap) + (A, Ay).

After integrating over p(R;, ©;), we obtain:

E)\ - ||Xt 1A — X 1BtH2+¢()\t7 )

t
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Modeling Time-dynamics: McCarthy and Jensen (2016)

» Power-weighted likelihoods let information decay over time
» To estimate parameters at time 7, let §; = 0.997 ¢, such that
01 < 02 < ... <6; =1, the likelihood at time 7 € {1,..., T} is

T

p(Ry, ..., R-©;) = [ [ p(R:|©;).

t=1
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Model Summary

K ot
Re|- ~ N (atlm + Z fkt(Xk,t—l)v U?’ﬂ)

k=1
fe (Xk.e—1) = Xkoe—1Bke = Xke—1L  LBke = Wit Yie
ar ~ N(0,1072)
o2 ~ U(0,10%)
(Vikellixe = 1,02) ~ N1(0, cko'?)
(Vjke| like = 0) = 0
like ~ Bn(pj = 0.2).

35



Our Contribution

If we are serious about understanding the functional form of these
partial relationships, then we should have

1. Additive splines: flexible and can separate to marginal effects

2. Monotonicity: complement the flexibility of the splines with a
priori known structure

3. A single intercept: identifiable and intuitive
4. Time-dynamics modeled, not just a rolling window

5. Separation between the shrinkage of coefficients and selection
of characteristics
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1 - Additive Model

K

E(rie|xit—1) = ar + Z fre(Xki t—1)
k=1

» xi.it—1 € (0,1) is the empirical percentile of characteristic k
for firm i at time t — 1, ranked over all firms

> Note that there are no interactions built into the model, as the
intention is to see the partial effect

37



2 - Monotonicity

» For m known knots, X1, ..., Xm,

f(x) = Bix + Box® + B3(x — %1)2 + ... + Bmr2(x — Zm)2

38



2 - Monotonicity

» For m known knots, X1, ..., Xm,
f(X) = le + B2X2 + ﬁ3(X - )?1)3- + .+ ﬁm+2(X - )?m)i

» Nondecreasing if all first derivatives are nonnegative
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2 - Monotonicity

» For m known knots, X1, ..., Xm,
f(X) = BIX + B2X2 + ﬁ3(X - )?1)3- + .+ ﬁm+2(X - )?m)i-

» Nondecreasing if all first derivatives are nonnegative

» Shively, Sager and Walker (2009) claim this yields m + 2 linear

constraints:
Lp>0
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2 - Monotonicity

For m knots, there are m + 2 conditions to satisfy:

0 < fk/t(o) = ﬁlkt
0 < fie(X1k) = Bike + 2B2ke X1k
0 < f(X2k) = Bkt + 2B2keXok + 2B3kt(Fok — X1k)

0 < f(1) = Bike + 2Boke + 2B3ke(1 — X1k) + . + 2Bm2,ke(1 — Ximk)

39



2 - Monotonicity

This can be vectorized as

1 0 0
1 2%, 0
0< 1 2% 2(%ak — %ak)

12 2(1 — %14)

o oo

2(1 = K1)

ooo

2Bmi2, k(1 — Zmk)

Bkt
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2 - Monotonicity

» For m known knots, X1, ..., Xm,
f(X) = 51X + B2X2 + 63(X - )?l)gr + ...+ Bm+2(x - )?m)i

» Nondecreasing if all first derivatives are nonnegative

» Shively, Sager and Walker (2009) show this yields m + 2 linear

constraints:
L >0

and the correct prior on v = LS will enforce monotonicity
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2 - Monotonicity
» For m known knots, X1, ..., Xm,
f(X) = 51X + ﬁ2X2 -+ 63(X — )?1)1 + ...+ Bm+2(X — )?m)i

» Nondecreasing if all first derivatives are nonnegative

» Shively, Sager and Walker (2009) show this yields m + 2 linear

constraints:
L >0

and the correct prior on v = LS will enforce monotonicity

> We use a modified version of their shrinkage prior:

(jllj = 0) ~ do
(= 1) ~ N1 (0, co®)
l; ~ Bernoulli(0.2)
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3 - Intercept adjustment

Recall our additive model, with spline basis X; x :—1 and a single

intercept
K

E(rielxie—1) = e+ Y Xike-18ne
k=1

= q; is the expected return for a firm with the minimum value for
all characteristics, i.e. Xjx¢—1 =0, Vk.
Problems:

1. Computationally challenging due to few and volatile data
points

2. Intuitively unfavorable as a baseline

3. Cannot see the lower tail effects change over time
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3 - Intercept adjustment

Proposal: let the intercept be the expected return for a firm that
has the median value for all characteristics

» Requires transforming the splines such that they equal 0 at the
median x = 0.5 and not x =0

» This then requires carefully expand spline basis and the
monotonicity constraint matrix L
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4 - Time-dynamics: McCarthy and Jensen (2016)

» Power-weighted likelihoods let information decay over time

» To estimate parameters at time 7, let §; = 0.997 ¢, such that
01 < 02 < ... <6; =1, the likelihood at time 7 € {1,..., T} is

p(r1, .., r102) = [ [ p(rel©7)".
t=1

44



Empirics

» Freyberger, Neuhierl, and Weber (2017)'s dataset:
» CRSP monthly stock returns for most US traded firms
» 36 characteristics from Compustat and CRSP, including size,

momentum, Ieverage, etc.
> July 1962 - June 2014

» Model trained on 120 month rolling window
> Presence and direction of monotonicity is determined by
important papers in the literature

» “Fully" Monotonic model includes constraints on 24 of 36
predictors

> “FF5" Monotonic model includes constraints on 6 predictors:
size, book-to-market, investment, profitability, two horizons of
momentum

45



