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Background

I Investors care about portfolio Return and Risk

I Objective: Maximize Sharpe Ratio = Excess Return
Risk

I Maximum Sharpe Ratio portfolio called Tangency Portfolio
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Let’s derive the CAPM!

I Portfolio of N assets defined by weights: {xim}Ni=1

I Covariance between returns i and j : σij = cov(ri , rj)

I Standard deviation of portfolio return:

σ(rm) =
N∑
i=1

xim
cov(ri , rm)

σ(rm)
(1)
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Maximizing Portfolio Return

I Choosing efficient portfolio =⇒ maximizes expected return
for a given risk: σ(rp)

I Choose {xim}Ni=1 to maximize:

E[rm] =
N∑
i=1

ximE[ri ] (2)

with constraints: σ(rm) = σ(rp) and
∑N

i=1 xim = 1
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What does this imply? (I)

The Lagrangian:

L(xim, λ, µ) =
N∑
i=1

ximE[ri ] + λ (σ(rp)− σ(rm)) + µ

(
N∑
i=1

xim − 1

)
(3)

Taking derivatives, setting equal to zero:

E[ri ]− λ
cov(ri , r

∗
m)

σ(r∗m)
+ µ = 0 ∀i (4)
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What does this imply? (II)

From 4, we have:

E[ri ]− λ
cov(ri , r

∗
m)

σ(r∗m)
= E[rj ]− λ

cov(rj , r
∗
m)

σ(r∗m)
∀i , j (5)

Assume ∃ r0 that is uncorrelated with portfolio rm. From 5, we

have:

E[r∗m]− E[r0]

σ(r∗m)
= λ (6)

E[ri ]− E[r∗m] = −λσ(r∗m) + λ
cov(ri , r

∗
m)

σ(r∗m)
(7)
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Bringing it all together

6 and 7 =⇒

E[ri ] = E[r0] + [E[r∗m]− E[r0]]βi (8)

where

βi =
cov(ri , r

∗
m)

σ2(r∗m)
(9)

Linear relationship between expected returns of asset and rm!
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Capital Asset Pricing Model (CAPM)

I r∗m = Market Portfolio

I For asset i :

E[ri ] = rf + βi [E[r∗m]− rf ] (10)
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Capital Asset Pricing Model (CAPM)

I For portfolio of assets:

E[r ] = rf + βP [E[r∗m]− rf ] (11)
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Background

”Lever up” to increase return ...

E[r ] = rf + βP [E[r∗m]− rf ]
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Risk / Return Space
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Background

I Investors constrained on amount of leverage they can take
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Background

Due to leverage constraints, overweight high-β assets instead

E[r ] = rf + βP [E[r∗m]− rf ]
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Background

Market demand for high-β

=⇒

high-β assets require a lower expected return than low-β assets

14



Can we bet against β ?
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Monthly Data

I 4,950 CRSP US Stock Returns from 1926-2013

I Fama-French Factors from 1926-2013
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Frazzini and Pederson (2014)

1. For each time t and each stock i , estimate βit

2. Sort βit from smallest to largest

3. Buy low-β stocks and Sell high-β stocks
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F&P (2014) BAB Factor

Buy top half of sort (low-β stocks) and Sell bottom half of sort
(high-β stocks) ∀t

rBABt+1 =
1

βLt
(rLt+1 − rf )− 1

βHt
(rHt+1 − rf ) (12)

βLt = ~βTt ~wL

βHt = ~βTt ~wH

~wH = κ(z − z̄)+

~wL = κ(z − z̄)−
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F&P (2014) BAB Factor

βit estimated as:

β̂it = ρ̂
σ̂i
σ̂m

(13)

I ρ̂ from rolling 5-year window

I σ̂’s from rolling 1-year window

I β̂it ’s shrunk towards cross-sectional mean
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Decile Portfolio α’s
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Low, High-β and BAB α’s
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Sharpe Ratios

Decile Portfolios (low to high β):

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
0.74 0.67 0.63 0.63 0.59 0.58 0.52 0.5 0.47 0.44

Low, High-β and BAB Portfolios:

Low-β High-β BAB Market
0.71 0.48 0.76 0.41
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Motivation
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Our Model

Re
it = βitR

e
mt + exp

(
λt
2

)
εt (14)

βit = a + bβit−1 + wt (15)

λit = c + dλit−1 + ut (16)

εt ∼ N[0, 1]

wt ∼ N[0, σ2β]

ut ∼ N[0, σ2λ]
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The Algorithm

1. P(β1:T |Θ, λ1:T ,DT ) (FFBS)

2. P(λ1:T |Θ, β1:T ,DT ) (Mixed Normal FFBS)

3. P(Θ|β1:T , λ1:T ,DT ) (AR(1))

I βt |Θ, λ1:T ,Dt

26



Comparison: Decile Portfolio α’s
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Comparison: With β Shrinkage
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Comparison: Without β Shrinkage
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Comparison: Sharpe Ratios and α’s

Shrinkage? Method BAB Sharpe BAB α

Yes BAB Paper 0.76 0.75

SS Approach 0.42 0.58

No BAB Paper 0.04 0.75

SS Approach 0.43 1.73
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High Frequency Estimation
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High Frequency Estimation
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High Frequency Estimation
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