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Motivating problem: Charles’ dilemma

He’d like to invest some money in the market.

He’s heard passive funds are the way to go.
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But ... ∃ thousands of passive funds
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The context for this talk

This problem (and many others like it!) can be studied using
variable selection techniques from statistics to induce sparsity.

What’s typically done? (broadly speaking)

• Bayesian: Shrinkage prior design.
• Frequentist: Penalized likelihood methods.

Common theme? Sparsity and inference go hand in hand.
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Separating priors from utilities

Our view: Subset selection is a decision problem. We need a
suitable loss function, not a more clever prior.

This leads us to think of selection in a “post-inference
world” by comparing models (or in this case, portfolios)
based on utility.∗

*sparsity and statistical uncertainty play a key role in this
post-inference exercise.
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Utility-based selection: Primitives

Let wt be a portfolio decision, λt be a complexity parameter, Θt be
a vector of model parameters, and R̃t be future data.

1. Loss function L(wt, R̃t) – measures utility.

2. Complexity function Φ(λt,wt) – measures sparsity.

3. Statistical model Π(Θt) – characterizes uncertainty.

4. Regret tolerance κ – characterizes degree of comfort
from deviating from a “target decision” (in terms of
posterior probability).
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Utility-based selection: Procedure

• Optimize E[L(wt, R̃t) + Φ(λt,wt)], where the
expectation is over p(R̃t,Θt | R).

• Calculate regret versus a target w∗
t for decisions

indexed by λt.

→ ρ(wλt ,w∗
t , R̃t) = L(wλt , R̃t)− L(w∗

t , R̃t)

• Select w∗
λt as the decision satisfying the tolerance.

→ πλt = P[ρ(wλt ,w∗
t , R̃t) < 0] (satisfaction probability)

→ Select wλ∗
t s.t. πλ∗

t > κ
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Example I: Long-only ETF investing

• Let R̃t be a vector of future ETF returns.
• Let wt be the portfolio weight vector (decision) at time t.
• We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: L(w, R̃t) = − log
(
1+

∑N
k=1 wk

t R̃k
t

)
2. Complexity: Number of funds in portfolio (think ∥wt∥0)
3. Model: DLM for R̃t parameterized by (µt,Σt | Dt−1)

Data: Monthly returns on 25 ETFs from 1992-2016.
Target: Fully invested (dense) portfolio.
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Step 1: Constructing portfolio decisions

• Portfolio decisions have ≤ 5 funds.

• ≥ 25% in SPY

Decisions are found by minimizing expected loss for each time t.
Results in a choice of 12,950 decisions to choose among!!
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Step 2: Compute and examine ρ for optimal decisions

λt−decisions ordered by increasing satisfaction probability − March 2002
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Step 3: Select decisions based on satisfaction threshold κ

Dates SPY EZU EWU EWY EWG EWJ OEF IVV IVE EFA IWP IWR IWF IWN IWM IYW IYR RSP

2003 25 - 58 - - - - - - - - - - 8.3 - - - 8.3
2004 25 - 43 - - 20 - 6.2 - - - - - - - - - 6.2
2005 25 - 25 - 6.2 13 - - - - - - - - - - 30 -
2006 62 - - - 6.2 19 - - - - - - 6.3 - 6.2 - - -
2007 75 - - 25 - - - - - - - - - - - - - -
2008 44 - - - 8.3 21 - - - 26 - - - - - - - -
2009 30 - - 6.2 - 41 - - - 17 6.3 - - - - - - -
2010 75 - - 8.3 - - - - - - 8.3 - - - - 8.3 - -
2011 58 - 25 - - - - - - - 8.3 - - - - 8.3 - -
2012 29 8.3 - - - 54 - - - - - - - - - 8.3 - -
2013 34 - - - - 49 - - - - 8.3 - - - - 8.3 - -
2014 25 - - - - 37 26 - - 6.2 - 6.2 - - - - - -
2015 45 - - - - 39 - - 8.3 - 8.3 - - - - - - -
2016 35 - - - - 40 - 17 - - 8.3 - - - - - - -

Selected decisions for κ = 45% threshold.
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What about other models / variable selection tasks?
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Example II: Monotonic function estimation

Goal: Describe expected returns with firm characteristics or
accounting measures (size, book-to-market, momentum, ...).

E[Rit | Xit−1] = f (Xit−1)

Rit: excess return of firm i at time t
Xit−1: vector of characteristics of firm i at time t

We would like to learn f
and which Xk

it−1’s matter!
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Portfolio sorts are one way to understand f ...

Jegadeesh and Titman (2001)
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Challenges and a solution

• Xit−1 is multidimensional.
• Even if we had only 12 characteristics and sorted into quintiles

along each dimension, that requires constructing
512 = 244140625 portfolios!

We propose modeling the CEF using additive quadratic splines
(with monotonicity constraints and time variation):

E[Rit | Xit−1] = αt +
K∑

k=1
gkt(xki,t−1)

15



Why monotonicity?

Finance data is noisy – a structured model is important here.
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Estimated functions at January 1978
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monotonicity is enforced by linear constraints on spline coefficients
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How does the function vary over time?
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Dynamics of other characteristics

Short-term reversal Size
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A model with 36 characteristics - January 1978
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Utility-based selection can be used here, too!

Primitives:

1. Loss: L(R̃t,At,Θt) =
1
2(R̃t − Xt−1At)T(R̃t − Xt−1At)

2. Complexity: Group lasso penalty on the spline basis
coefficients At

3. Model: Dynamic monotonic quadratic splines

Posterior summary plots
for spline covariate selec-
tion
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A model with 36 characteristics - January 1978
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Concluding thoughts, and thanks!

• Passive investing and monotonic function estimation
approached using new posterior summarization technique.

• Utility functions can enforce inferential preferences that
are not prior beliefs.

• Statistical uncertainty should be used as a guide to avoid
overfitting.
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Extra slides



What is innovative here?

Portfolio selection literature typically focuses on one of the following:

• Modeling inputs Θt = (µt,Σt): Jobson (1980), Ledoit and Wolf
(2007), Garlappi (2007), DeMiguel (2009) ...

• Optimizing in a clever way: Jagananathan (2002), Brodie (2009),
Fan (2012), Fastrich (2013) ...

Utility-based selection incorporates both modeling and
optimization through analysis of ρ(wλt ,w∗

t , R̃t).

25



What is innovative here?

Portfolio selection literature typically focuses on one of the following:

• Modeling inputs Θt = (µt,Σt): Jobson (1980), Ledoit and Wolf
(2007), Garlappi (2007), DeMiguel (2009) ...

• Optimizing in a clever way: Jagananathan (2002), Brodie (2009),
Fan (2012), Fastrich (2013) ...

Utility-based selection incorporates both modeling and
optimization through analysis of ρ(wλt ,w∗

t , R̃t).

25



Comparing portfolios to their targets out of sample

out-of-sample statistics
Sharpe
ratio s.d. mean

return
sparse 0.40 14.98 6.02
dense 0.45 14.41 6.47

Ex ante equivalence appears to carry over ex post.

There appear to be little ex post benefits of diversification.
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Step 1: The expected loss

L(wt) = EΘtER̃t|Θt

[
− log(1+ΣN

k=1wk
t R̃k

t ) + Φ(λt,wt)
]

≈ EΘtER̃t|Θt

[
−ΣN

k=1wk
t R̃k

t +
1
2Σ

N
k=1Σ

N
j=1wk

t wj
tR̃k

t R̃j
t +Φ(λt,wt)

]
= −wT

t µt +
1
2wT

t Σ
NC
t wt +Φ(λt,wt).

The past returns Rt enter into our utility consideration by defining
the posterior predictive distribution.
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A dynamic regression model giving moments (µt,Σt)

R̃i
t = (βi

t)
TR̃F

t + ϵi
t, ϵi

t ∼ N(0, 1/ϕi
t), β

i
t = βi

t−1 + wi
t, wi

t ∼ Tni
t−1

(0,Wi
t),

βi
0 | D0 ∼ Tni

0
(mi

0,Ci
0), ϕi

0 | D0 ∼ Ga(ni
0/2, di

0/2),
βi

t | Dt−1 ∼ Tni
t−1

(mi
t−1,Ri

t), Ri
t = Ci

t−1/δβ ,

ϕi
t | Dt−1 ∼ Ga(δϵni

t−1/2, δϵdi
t−1/2),

R̃F
t = µF

t + νt, νt ∼ N(0,ΣF
t ), µF

t = µF
t−1 +Ωt Ωt ∼ N(0,Wt,Σ

F
t ),

(µF
0 ,Σ

F
0 | D0) ∼ NW−1

n0 (m0,C0, S0),

(µF
t ,Σ

F
t | Dt−1) ∼ NW−1

δFnt−1
(mt−1,Rt,St−1), Rt = Ct−1/δc︸ ︷︷ ︸

µt = βT
t µ

F
t

Σt = βtΣ
F
tβ

T
t +Ψt

→ Moments are used in the expected loss minimization
→ Predictive distribution is used to compute ρ
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Formulating as a convex penalized optimization

Define Σ = LLT.

L(w) = −wTµ+
1
2wTΣw + λ ∥w∥1

=
1
2
∥∥LTw − L−1µ

∥∥2
2 + λ ∥w∥1 .

Now, we can solve the optimization using existing algorithms, such
as lars of Efron et. al. (2004).
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Example: Gross exposure complexity function

• Let R̃t be a vector of N future asset returns.
• Let wt be the portfolio weight vector (decision) at time t.
• We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: − log
(
1+

∑N
k=1 wk

t R̃k
t

)
2. Complexity: λt ∥wt∥1

3. Model: DLM for R̃t parameterized by (µt,Σt)

4. Regret tolerance: Let’s consider several κ’s.

Assume the target is fully invested (dense) portfolio.
Data: Returns on 25 ETFs from 1992-2016.

30



Example: Gross exposure complexity function

• Let R̃t be a vector of N future asset returns.
• Let wt be the portfolio weight vector (decision) at time t.
• We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: − log
(
1+

∑N
k=1 wk

t R̃k
t

)
2. Complexity: λt ∥wt∥1

3. Model: DLM for R̃t parameterized by (µt,Σt)

4. Regret tolerance: Let’s consider several κ’s.

Assume the target is fully invested (dense) portfolio.

Data: Returns on 25 ETFs from 1992-2016.

30



Example: Gross exposure complexity function

• Let R̃t be a vector of N future asset returns.
• Let wt be the portfolio weight vector (decision) at time t.
• We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: − log
(
1+

∑N
k=1 wk

t R̃k
t

)
2. Complexity: λt ∥wt∥1

3. Model: DLM for R̃t parameterized by (µt,Σt)

4. Regret tolerance: Let’s consider several κ’s.

Assume the target is fully invested (dense) portfolio.
Data: Returns on 25 ETFs from 1992-2016.

30



Optimal decisions lined up for a snapshot in time

After optimizing expected loss for 500 λt’s, we compute regret
ρ(wλt ,w∗

t , R̃t) (left axis) and πλt (right axis).

λt−decisions ordered by increasing satisfaction probability − March 2002
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Regret-based selection: Illustration

dλ : sparse decisions, d∗ : target decision.

πλ = P[ρ(dλ, d∗, Ỹ) < 0]: probability of not regretting λ-decision.
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Ex ante SRtarget − SRdecision evolution
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UBS for Monotonic function estimation

The regression model is:

Rit = αt +
K∑

k=1
fkt(xki,t−1) + ϵit, ϵit ∼ N(0, σ2)

Insight – with quadratic splines for all fkt, this can be written as a
predictive regression:

Rt ∼ N
(
Xt−1Bt, σ

2
t Int

)
where

Xt−1 =
[
1nt Xt−1

]
, Bt =

[
αt βt

]
Xt−1 is matrix of size nt ×K(m+ 2), βt is vector of size K(m+ 2).
Therefore, each firm is given a row in Xt−1, and each m + 2 block
of βt corresponds to the coefficients on the spline basis for a
particular characteristic, k. 34



UBS for Monotonic function estimation

We can now proceed as Hahn and Carvalho (2015). The loss
function is the negative log density of the regression plus a penalty
function Φ with parameter λt. Also, let the “sparsified action” for
the coefficient matrix At.

Lt(R̃t,At,Θt) =
1
2(R̃t − Xt−1At)

T(R̃t − Xt−1At) + Φ(λt,At).

After integrating over p(R̃t,Θt), we obtain:

Lλt(At) =
∥∥Xt−1At − Xt−1Bt

∥∥2
2 +Φ(λt,At)
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Modeling Time-dynamics: McCarthy and Jensen (2016)

• Power-weighted likelihoods let information decay over time
• To estimate parameters at time τ , let δt = 0.99τ−t, such that

δ1 ≤ δ2 ≤ ... ≤ δτ = 1, the likelihood at time τ ∈ {1, ...,T} is

p(R1, ...,Rτ |Θτ ) =
τ∏

t=1
p(Rt|Θτ )

δt .
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Model Summary

Rt|· ∼ N
(
αt1nt +

K∑
k=1

fkt(xk,t−1), σ
2
t In

)δt

fkt(xk,t−1) = Xk,t−1βkt = Xk,t−1L−1Lβkt = Wktγkt

αt ∼ N(0, 10−2)

σ2
t ∼ U(0, 103)

(γjkt|Ijkt = 1, σ2
t ) ∼ N+(0, ckσ

2
t )

(γjkt|Ijkt = 0) = 0
Ijkt ∼ Bn(pjk = 0.2).
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Data

Freyberger, Neuhierl, and Weber (2017)’s dataset:

• CRSP monthly stock returns for most US traded firms
• 36 characteristics from Compustat and CRSP, including size,

momentum, leverage, etc.
• July 1962 - June 2014

Presence and direction of monotonicity is determined by important
papers in the literature.
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