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Two Problems

1. Investing: Among thousands of choices, which passive funds
should I invest in?

2. Asset pricing: Which risk factors matter?

How are these connected?
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Statistics

An answer: Both can be studied using variable selection techniques
from statistics.

Now, a brief statistics interlude ...
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Reasons for variable selection

⇒ Because we’re scientists and we test hypotheses!

⇒ Because fewer variables are faster to compute with!

⇒ Because thinking hard about fewer things is easier than
thinking hard about many things.

There are probably others. The important point is that they are
distinct reasons.
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My motivation for sparsity
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Vast literature on variable selection (a.k.a. sparsifying)

⇒ Frequentist: forward/backward stepwise selection.

Issue: What stopping criterion?

⇒ Bayesian: Priors forcing irrelevant coefficients to zero.

Issue: Confusion of inference and utility?

⇒ Penalized likelihood: LARS, LASSO, Group Lasso, Ridge.

Issue: What penalty parameter (λ)?
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A new paradigm

“Decoupling Shrinkage and Selection in Bayesian Linear
Models.” Hahn and Carvalho. Journal of the American
Statistical Association, 2015.

• Argues for a two-step approach using a loss function,
L(γ) = f (γ, θ) + penalty(γ). γ is the “action.”

1. Characterize uncertainty in the problem.

2. Optimize L(γ) integrated over this uncertainty.
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Passive Investing



The setup

I Action: Portfolio weights w .

I Define loss by “portfolio variance - portfolio mean + penalty”.

I Goal: find a sparse representation of w while simultaneously
maximizing Sharpe ratio.
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A loss function for the mean-variance investor

Given future asset returns R̃, we define a loss function balancing
Sharpe ratio and portfolio simplicity.

L(w , R̃) = −
N∑

k=1

wk R̃k +
1

2

N∑
k=1

N∑
j=1

wkwj R̃k R̃j + λ ‖w‖1

We are in search of the highest Sharpe ratio, simplest portfolios!
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Where is the uncertainty?

I Assume future asset returns follow R̃ ∼ Π(µ,Σ).

I The parameters θ = (µ,Σ) are uncertain, too!

I Our expected loss is derived by integrating over p(R̃|θ)
followed by p(θ|R), the posterior distribution over θ.
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Integrating over uncertainty

L(w) = EθER̃|θ

− N∑
k=1

wk R̃k +
1

2

N∑
k=1

N∑
j=1

wkwj R̃k R̃j + λ ‖w‖1


= Eθ

[
−wTµ+

1

2
wTΣw

]
+ λ ‖w‖1

= −wTµ+
1

2
wTΣw + λ ‖w‖1 .

The past returns R enter into our utility consideration by defining
the posterior predictive distribution.
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Formulating as a LASSO

Define Σ = LLT .

L(w) = −wTµ+
1

2
wTΣw + λ ‖w‖1

=
1

2

∥∥∥LTw − L−1µ
∥∥∥2
2

+ λ ‖w‖1 .

Now, we can solve the optimization using existing algorithms, such
as lars of Efron et. al. (2004).
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Application to ETF investing

I Data: Returns on 25 ETFs from 1992-2015.

I Model: Assume returns follow a latent factor model.

I Question: Optimal portfolio of a small number of ETFs?
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Posterior summary plot
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Sharpe ratio
Unpenalized portfolio Sharpe ratio

ETF IWR RSP IYR IYW

weight 56 21.5 13.9 8.6

style mid-cap equal weight real estate tech

Find the smallest portfolio such that with probability 99% I give up
less than (blank) in Sharpe ratio.
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Including a market ETF
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Sharpe ratio
Unpenalized portfolio Sharpe ratio

ETF SPY EWJ IWO IYR EWY

weight 108.2 -22.9 -2.6 17.2 0.1

style market Japan small growth real estate South Korea
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Choosing among 100 stocks
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Sharpe ratio
Dense portfolio Sharpe ratio

ETF AIG WDC YRCW ESCR ASEI ARTW

weight 467.7 -51.8 -525.5 -92.7 270.8 31.6
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Which risk factors matter?



The Factor Zoo (Cochrane, 2011)

I Market

I Size

I Value

I Momentum

I Short and long term reversal

I Betting against β

I Direct profitability

I Dividend initiation

I Carry trade

I Liquidity

I Quality minus Junk

I Investment

I Leverage

I ...

18



The Factor Zoo (Cochrane, 2011)

I Market

I Size

I Value

I Momentum

I Short and long term reversal

I Betting against β

I Direct profitability

I Dividend initiation

I Carry trade

I Liquidity

I Quality minus Junk

I Investment

I Leverage

I ...

19



A loss function for determining important factors

I Test assets: R, Factors: F .

I Define loss by conditional likelihood, R|F ∼ N(γF ,D−1).

I Goal: find a sparse representation of γ, where γ is a matrix
relating R and F .

Integrating conditional likelihood over p(R̃, F̃ |θ) and p(θ|R,F )
gives another LASSO loss function!
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Posterior summary plot

model size
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Model size here refers to nonzero entries of γ, or equivalently,
edges of graph representing γ. 21



Factor selection graph

R: Fama-French 25 Portfolios, F : 10 factors, strong shrinkage
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Factor selection graph

R: 30 Industry Portfolios, F : 10 factors, strong shrinkage
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R: 30 Industry Portfolios, F : 10 factors, weak shrinkage
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Another application: ETF selection

R: 100 Mutual funds, F : 25 ETFs, strong shrinkage
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Concluding thoughts

I Passive investing and factor selection for asset pricing models
approached using new DSS technique.

I Utility functions can enforce inferential preferences that are
not prior beliefs.

I Ideas presented are generalizable and scalable. There is more
work to be done ..

I Thanks!
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