Building Optimal Portfolios

David Puelz and Zack Liu

MSF and MSBA Quant Investing March 30, 2016 1. Optimization

2. Implementing in Excel

3. Implementing in ${\sf R}$

Optimization

Portfolios and optimal weights

- 1. SPY S&P 500 ETF (Market)
- 2. IWM Russel 2000 ETF (Small Cap)
- 3. EFA Europe, Australia, Asia, and the Far East (Global)
- 4. IYR US Real Estate ETF

Expected Returns		Covari	Covariance Matrix						
			SPY	IWM	IYR	EFA			
SPY	0.491	SPY	19.359	16.586	5.494	13.503			
IWM	0.375	IWM	16.586	29.769	9.501	15.001			
IYR	0.466	IYR	5.494	9.501	13.368	4.449			
EFA	0.095	EFA	13.503	15.001	4.449	19.345			

Portfolios and optimal weights

- 1. SPY S&P 500 ETF (Market)
- 2. IWM Russel 2000 ETF (Small Cap)
- 3. EFA Europe, Australia, Asia, and the Far East (Global)
- 4. IYR US Real Estate ETF

Expected Returns		Covariance Matrix						
			SPY	IWM	IYR	EFA		
SPY	0.491	SPY	19.359	16.586	5.494	13.503		
IWM	0.375	IWM	16.586	29.769	9.501	15.001		
IYR	0.466	IYR	5.494	9.501	13.368	4.449		
EFA	0.095	EFA	13.503	15.001	4.449	19.345		

 Optimal
 Weights

 w_SPY
 0.995

 w_IWM
 -0.186

 w_IYR
 0.802

w_EFA -0.611

What a mean-variance investor needs

Assume we have N risky assets with mean vector (ie, expected excess returns) μ and variance covariance matrix Σ .

$$\boldsymbol{\mu}_{(N\times 1)} = \begin{bmatrix} E(r_1) \\ E(r_2) \\ \vdots \\ E(r_N) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_N \end{bmatrix}$$
$$\boldsymbol{\Sigma}_{(N\times N)} = \begin{pmatrix} var(r_1) & cov(r_1, r_2) & \cdots & cov(r_1, r_N) \\ cov(r_2, r_1) & var(r_2) & \cdots & cov(r_2, r_N) \\ \cdots & \cdots & \cdots \\ cov(r_N, r_1) & \cdots & \cdots & var(r_N) \end{pmatrix}$$
$$= \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1N} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2N} \\ \cdots & \cdots & \cdots \\ \sigma_{N1} & \cdots & \cdots & \sigma_N^2 \end{pmatrix}$$

From moments to an optimal portfolio

Define a portfolio by its weights, \boldsymbol{w}_p .

• Portfolio mean:
$$\mu_{p} = \boldsymbol{w}_{p}^{\prime} \boldsymbol{\mu}$$

• Portfolio variance: $\sigma_p^2 = w'_p \Sigma w_p$

<u>Goal</u>: Find an optimal set of weights. We care about the *return/risk trade-off* so we will solve the following optimization problem:

$$\min_{oldsymbol{w}} \{oldsymbol{w}_{oldsymbol{p}}^{\prime} oldsymbol{\Sigma} oldsymbol{w}_{oldsymbol{p}} \}$$
 s.t. $oldsymbol{w}_{oldsymbol{p}}^{\prime} oldsymbol{\mu} = c$

Solving for the optimal weights

Set up the Lagrangian function:

$$L = \boldsymbol{w}_{p}^{\prime} \boldsymbol{\Sigma} \boldsymbol{w}_{p} - \lambda \left(\boldsymbol{w}_{p}^{\prime} \boldsymbol{\mu} - \boldsymbol{c} \right)$$

Differentiating L with respect to to \boldsymbol{w} and setting it to zero leads to:

$$2\boldsymbol{\Sigma}\boldsymbol{w}_{p} - \lambda\boldsymbol{\mu} = 0$$
$$\implies$$
$$\boldsymbol{w}_{p} = \lambda\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}$$

Solving for the optimal weights

Optimal weights are given by:

$$m{w}_p^* \propto m{\Sigma}^{-1} m{\mu}$$

We didn't enforce the weights to sum to 1, so we are assuming we can borrow at the risk-free rate.

We nail down the proportionality constant by enforcing weights to sum to 1:

$$oldsymbol{w}^*_{oldsymbol{
ho}} = \left(rac{1}{1'oldsymbol{\Sigma}^{-1}oldsymbol{\mu}}
ight)oldsymbol{\Sigma}^{-1}oldsymbol{\mu}$$

This is called the Tangency Portfolio!

An investor can minimize variance, too

In this case, the optimization problem is:

$$\min_{\boldsymbol{w}} \{ \boldsymbol{w}_{p}^{\prime} \boldsymbol{\Sigma} \boldsymbol{w}_{p} \}$$
 s.t. $\boldsymbol{w}_{p}^{\prime} \boldsymbol{1}^{\prime} = 1$

Set up the Lagrangian function:

$$L = \boldsymbol{w}_{p}^{\prime} \boldsymbol{\Sigma} \boldsymbol{w}_{p} - \lambda \left(\boldsymbol{w}_{p}^{\prime} \boldsymbol{1}^{\prime} - 1 \right)$$

Differentiating L with respect to to \boldsymbol{w} , setting it to zero and normalizing the weights leads to:

$$2\boldsymbol{\Sigma}\boldsymbol{w}_p - \lambda \mathbf{1} = \mathbf{0}$$

$$\stackrel{\Longrightarrow}{\Longrightarrow} w_p^* = \left(rac{1}{\mathbf{1}' \mathbf{\Sigma}^{-1} \mathbf{1}}
ight) \mathbf{\Sigma}^{-1} \mathbf{1}$$

Summary

Given moment estimates, μ and $\pmb{\Sigma}$:

• Mean-variance portfolio:
$$\boldsymbol{w}_{p}^{*} = \left(\frac{1}{\mathbf{1}'\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}}\right)\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}$$

- Minimum-variance portfolio: $\boldsymbol{w}_{p}^{*} = \left(\frac{1}{1'\boldsymbol{\Sigma}^{-1}\mathbf{1}}\right)\boldsymbol{\Sigma}^{-1}\mathbf{1}$
- Long-only versions of these portfolios need to be solved for numerically - there is not a nice solution :(

Implementing in Excel

Optimal Portfolio Weights in Excel

- 1. SPY S&P 500 ETF (Market)
- 2. IWM Russel 2000 ETF (Small Cap)
- 3. EFA Europe, Australia, Asia, and the Far East (Global)
- 4. IYR US Real Estate ETF

Given 10 years of monthly returns, how do we find optimal portfolio weights for the mean-variance efficient (min variance) portfolio?

FUNCTIONS: MMULT, TRANSPOSE, MINVERSE

Process

- 1. Calculate expected excess returns of each portfolio. =AVERAGE(B2:B121)
- 2. Calculate covariance matrix $\Sigma = E(X * X') - \mu * \mu'$ =(MMULT(TRANSPOSE(B2:E121),B2:E121)/120)-MMULT(TRANSPOSE(H3:H6),H3:H6)
- 3. Solve for weights $\Sigma^{-1}\mu$ or $\Sigma^{-1}1$ =MMULT(MINVERSE(L3:O6),H3:H6)
- $4. \ \mbox{Make}$ sure weights add up to 1

Implementing in ${\sf R}$

Optimal 8 ETF portfolio in R

- 1. SPY S&P 500 ETF (Market)
- 2. IWM Russel 2000 ETF (Small Cap)
- 3. EFA Europe, Australia, Asia, and the Far East (Global)
- 4. EEM Emerging Markets ETF
- 5. EWJ Japanese Equity ETF
- 6. EWU United Kingdom Equity ETF
- 7. EWY South Korean Equity ETF
- 8. IYR US Real Estate ETF

Given 13 years of monthly returns, how do we find optimal portfolio weights for the mean-variance efficient (min variance) portfolio?

Estimating μ and ${f \Sigma}$

There are so many ways!

- Historical: Each observation weighted equally.
 R functions: colMeans() and cov().
- Exponential weighting: Observation t weighted with α^{T−t} for an 0 ≤ α ≤ 1. Here, T is the size of your rolling window.
 R functions: cov.wt().

► Factor models: Assume asset returns have a factor structure. Think of the CAPM: $r_i^e = \beta r_{market}^e + \epsilon_i$

Process

- 1. Estimate μ and Σ using functions colMeans(), cov(), and cov.wt().
- Calculate optimal weights using a matrix product %*% or, for long only weights, the function optim().
- 3. Renormalize weights to 1, use something like: w/sum(w).
- 4. Rolling window? Use a for loop!